

Superten 7K Ballance Agri-Nutrients

Chemwatch: 16-3139

Chemwatch Hazard Alert Code: 3

Issue Date: **01/11/2019**Print Date: **09/06/2021**L.GHS.NZL.EN

Version No: **6.1.2.4**Safety Data Sheet according to the Health and Safety at Work (Hazardous Substances) Regulations 2017

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier	
Product name	Superten 7K
Chemical Name	Not Applicable
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Fertiliser.

Details of the supplier of the safety data sheet

	•
Registered company name	Ballance Agri-Nutrients
Address	161 Hewletts Rd Mount Maunganui New Zealand
Telephone	+64 800 222 090
Fax	Not Available
Website	Not Available
Email	customerservices-mount@ballance.co.nz

Emergency telephone number

Association / Organisation	CHEMCALL
Emergency telephone numbers	Freephone: 0800 CHEMCALL (0800 243 622) (24 Hours/ 7 Days)
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Considered a Hazardous Substance according to the criteria of the New Zealand Hazardous Substances New Organisms legislation. Not regulated for transport of Dangerous Goods.

ChemWatch Hazard Ratings

	Min	Max	
Flammability	0	:	
Toxicity	3	0 = Minimum	n
Body Contact	2	1 = Low	
Reactivity	0	2 = Moderate	Э
Chronic	2	3 = High 4 = Extreme	

Classification ^[1]	Eye Irritation Category 2, Specific target organ toxicity - repeated exposure Category 2, Chronic Aquatic Hazard Category 4, Acute Vertebrate Hazard Category 3, Skin Corrosion/Irritation Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI
Determined by Chemwatch using GHS/HSNO criteria	6.3A, 6.4A, 6.9B, 9.1D, 9.3C

Label elements

Hazard pictogram(s)

Signal word	Warning
-------------	---------

Hazard statement(s)

H319	Causes serious eye irritation.
H373	May cause damage to organs through prolonged or repeated exposure.
H413	May cause long lasting harmful effects to aquatic life.
H433	Harmful to terrestrial vertebrates.
H315	Causes skin irritation.

Precautionary statement(s) Prevention

P260	Do not breathe dust/fume.
P273	Avoid release to the environment.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P314	Get medical advice/attention if you feel unwell.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P332+P313	If skin irritation occurs: Get medical advice/attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

IIIIACUI 00		
CAS No	%[weight]	Name
7778-18-9	30-60	calcium sulfate
7758-23-8	10-30	calcium phosphate, monobasic
7447-40-7	10-30	potassium chloride
7789-75-5	1-10	calcium fluoride
7664-38-2	1-10	phosphoric acid
7732-18-5	1-10	water
Legend:	Classified by Chemwatch; 2. Classification drawn from CCID EPA NZ; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures		
Eye Contact	If this product comes in contact with eyes: Wash out immediately with water. If irritation continues, seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.	
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. 	
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. 	

Issue Date: 01/11/2019 Print Date: 09/06/2021

- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

Indication of any immediate medical attention and special treatment needed

for phosphate salts intoxication:

- All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.
- Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity.
- ▶ Treatment should take into consideration both anionic and cation portion of the molecule.
- All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored.

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

opositi nazardo anomy nom tro daborato o mixtaro		
Fire Incompatibility	None known.	
Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. 	
Fire/Explosion Hazard	 ▶ Non combustible. ▶ Not considered a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: hydrogen chloride hydrogen fluoride phosphorus oxides (POx) sulfur oxides (SOx) metal oxides May emit poisonous fumes. 	

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

May emit corrosive fumes.

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Environmental hazard - contain spillage. Clean up all spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Sweep up, shovel up or Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). Place spilled material in clean, dry, sealable, labelled container.
Major Spills	Environmental hazard - contain spillage. Moderate hazard. CAUTION: Advise personnel in area. Alert Emergency Services and tell them location and nature of hazard. Control personal contact by wearing protective clothing. Prevent, by any means available, spillage from entering drains or water courses. Recover product wherever possible. IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Chemwatch: **16-3139**Version No: **6.1.2.1**

Superten 7K

Issue Date: **01/11/2019**Print Date: **09/06/2021**

Precautions for safe handling

- ► Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ► Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.

Safe handling

- Avoid contact with incompatible materials.
 When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- ► Store in original containers.
- Keep containers securely sealed.
- ▶ Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Other information

For major quantities:

Consider storage in bunded areas - ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).

• Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

Calcium sulfate:

- reacts violently with reducing agents, acrolein, alcohols, chlorine trifluoride, diazomethane, ethers, fluorine, hydrazine, hydrazinium perchlorate, hydrogen peroxide, finely divided aluminium or magnesium, peroxyfuroic acid, red phosphorus, sodium acetylide
- sensitises most organic azides which are unstable shock- and heat- sensitive explosives
- may form explosive materials with 1,3-di(5-tetrazolyl)triazene
- is incompatible with glycidol, isopropyl chlorocarbonate, nitrosyl perchlorate, sodium borohydride
- is hygroscopic; reacts with water to form gypsum and Plaster of Paris
- Phosphates are incompatible with oxidising and reducing agents.
- Phosphates are susceptible to formation of highly toxic and flammable phosphine gas in the presence of strong reducing agents such as hydrides.
- Partial oxidation of phosphates by oxidizing agents may result in the release of toxic phosphorus oxides.

- X Must not be stored together
- May be stored together with specific preventions
- + May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
New Zealand Workplace Exposure Standards (WES)	calcium sulfate	Calcium sulphate (Gypsum, Plaster of Paris)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	calcium sulfate	Plaster of Paris (Calcium sulphate)	10 mg/m3	Not Available	Not Available	Not Available
New Zealand Workplace Exposure Standards (WES)	calcium fluoride	Fluorides, as F	2.5 mg/m3	Not Available	Not Available	bio-Exposure can also be estimated by biological monitoring
New Zealand Workplace Exposure Standards (WES)	phosphoric acid	Phosphoric acid	1 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
calcium fluoride	15 mg/m3	170 mg/m3	1,000 mg/m3
phosphoric acid	Not Available	Not Available	Not Available

F	1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		
Ingredient	Original IDLH	Revised IDLH	
calcium sulfate	Not Available	Not Available	

Issue Date: **01/11/2019**Print Date: **09/06/2021**

Ingredient	Original IDLH	Revised IDLH
calcium phosphate, monobasic	Not Available	Not Available
potassium chloride	Not Available	Not Available
calcium fluoride	250 mg/m3	Not Available
phosphoric acid	1,000 mg/m3	Not Available
water	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
calcium phosphate, monobasic	E ≤ 0.01 mg/m³		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health		

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

Safety glasses with side shields.Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

frequency and duration of contact,

Print Date: 09/06/2021

- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present

- polychloroprene
- nitrile rubber.
- butyl rubber.
- ▶ fluorocaoutchouc.
- ► polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

Body protection

See Other protection below

Other protection

- Overalls
- P.V.C apron.
- ► Barrier cream.
- Skin cleansing cream.
- ► Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Superten 7K

Material	CPI
NEOPRENE	A
BUTYL	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PVA	С
PVC	С
SARANEX-23	С
VITON	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted

Respiratory protection

Type B-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	B P1 Air-line*	-	B PAPR-P1
up to 50 x ES	Air-line**	B P2	B PAPR-P2
up to 100 x ES	-	B P3	-
		Air-line*	-
100+ x ES	-	Air-line**	B PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur $\label{eq:conditional} \mbox{dioxide}(SO2), \ G = \mbox{Agricultural chemicals}, \ K = \mbox{Ammonia}(\mbox{NH3}), \ \mbox{Hg} = \mbox{Mercury}, \ \mbox{NO} = \$ Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

If inhalation risk above the TLV exists, wear approved dust respirator.

- Use respirators with protection factors appropriate for the exposure level. ▶ Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust respirator
- ▶ Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator
- ▶ Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator
- Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining

Issue Date: 01/11/2019

Chemwatch: **16-3139**Version No: **6.1.2.1**

Superten 7K

Issue Date: **01/11/2019**Print Date: **09/06/2021**

the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- \cdot Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

VOC g/L

Not Applicable

SECTION 9 Physical and chemical properties

nformation on basic physical and chemical properties				
Appearance	Appearance Gray, brown, white, yellow or red particles; slightly soluble in water.			
Physical state	Divided Solid	Relative density (Water = 1)	1-1.3	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable	
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	>130	Viscosity (cSt)	Not Available	
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable	
Flash point (°C)	Not Applicable	Taste	Not Available	
Evaporation rate	Not Applicable	Explosive properties	Not Available	
Flammability	Not Applicable	Oxidising properties	Not Available	
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable	
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Applicable	
Vapour pressure (kPa)	Not Applicable	Gas group	Not Available	
Solubility in water	Immiscible	pH as a solution (%)	Not Applicable	

SECTION 10 Stability and reactivity

Vapour density (Air = 1)

Not Applicable

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on	toxicological	effects
----------------	---------------	---------

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Ingestion

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Skin Contact

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition

Page 8 of 13 Issue Date: 01/11/2019 Version No: 6.1.2.1 Print Date: 09/06/2021

Irritation and skin reactions are possible with sensitive skin Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals Eye Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity Chronic Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray. Harmful: danger of serious damage to health by prolonged exposure through inhalation. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. TOXICITY IRRITATION Superten 7K Not Available Not Available TOXICITY IRRITATION Inhalation(Rat) LC50; >3.26 mg/l4h^[1] Not Available calcium sulfate Oral(Rat) LD50; >1581 mg/kg[1] TOXICITY IRRITATION Dermal (rabbit) LD50: >300 mg/kg^[1] Eye: Severe calcium phosphate. monobasic Eye: adverse effect observed (irreversible damage)[1]Inhalation(Rat) LC50; >2.6 mg/l4h[1] Oral(Rat) LD50; 3986 mg/kg[2] Skin: no adverse effect observed (not irritating)[1] TOXICITY IRRITATION potassium chloride Oral(Mouse) LD50; ~117 mg/kg^[1] Eye (rabbit): 500 mg/24h - mild TOXICITY IRRITATION Not Available dermal (rat) LD50: >905 mg/kg^[1] calcium fluoride Inhalation(Rat) LC50; 0.29 mg/l4h[1] Oral(Rat) LD50; 101 mg/kg[1] TOXICITY IRRITATION Dermal (rabbit) LD50: >1260 mg/kg^[1] Eye (rabbit): 119 mg - SEVERE Eye: adverse effect observed (irritating)^[1] Inhalation(Rat) LC50; 0.026 mg/L4h^[2] phosphoric acid Skin (rabbit):595 mg/24h - SEVERE Oral(Rat) LD50; >300<2000 mg/kg^[1] Skin: adverse effect observed (corrosive)^[1] TOXICITY IRRITATION water Oral(Rat) LD50; >90000 mg/kg[2] Not Available 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise Leaend: specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

> Gypsum (calcium sulfate dihydrate) is a skin, eye, mucous membrane, and respiratory system irritant. Early studies of gypsum miners did not relate pneumoconiosis with chronic exposure to gypsum. Other studies in humans (as well as animals) showed no lung fibrosis produced by natural dusts of calcium sulfate except in the presence of silica. However, a series of studies reported chronic nonspecific respiratory diseases in gypsum industry workers in Gacki, Poland.

Unlike other fibers, gypsum is very soluble in the body; its half-life in the lungs has been estimated as minutes. In four healthy men receiving calcium supplementation with calcium sulfate (CaSO4-1/2H2O) (200 or 220 mg) for 22 days, an average absorption of 28.3% was reported. Several feeding studies in pigs on the bioavailability of calcium in calcium supplements, including gypsum, have been conducted. The bioavailability of calcium in gypsum was similar to that for calcitic limestone, oyster shell flour, marble dust, and aragonite, ranging from 85 to 102%. In mice, the i.p. and intragastric LD50 values were 6200 and 4704 mg/kg, respectively, for phosphogypsum (98% CaSO4-H2O). For Plaster of Paris, the values were 4415 and 5824, respectively. In

rats, an intragastric LD50 of 9934 mg/kg was reported for phosphogypsum

CALCIUM SULFATE

Repeat dose toxicity: In a study of 241 underground male workers employed in four gypsum mines in Nottinghamshire and Sussex for a year (November 1976-December 1977), results of chest X-rays, lung function tests, and respiratory systems suggested an association of the observed lung shadows with the higher quartz content in dust rather than to gypsum; the small round opacities in the lungs were characteristic of silica exposure.

Prophylactic examinations of workers in a gypsum extraction and production plant (dust concentration exceeded TLV 2.5- to 10-fold) reported no risk of pneumoconiosis due to gypsum exposure, while another study of gypsum manufacturing plant workers reported that chronic occupational exposure to gypsum dust had resulted in pulmonary ventilatory defect of the restrictive form.

Three cases of idiopathic interstitial pneumonia with multiple bullae throughout the lungs were seen in Japanese schoolteachers (lifetime occupation) exposed to chalk; 2/3 of the chalk was made from gypsum and small amounts of silica and other minerals.

In rats exposed to an aerosol of anhydrous calcium sulfate fibers (15 mg/m3) or a combination of milled and fibrous calcium sulfate (60 mg/m3) six hours per day, five days per week for three weeks, gypsum dust was quickly cleared from the lungs of via dissolution and mechanisms of

Issue Date: **01/11/2019**Print Date: **09/06/2021**

particle clearance

In guinea pigs given intraperitoneal (i.p.) injections of gypsum (doses not provided), gypsum was absorbed followed by the dissolution of gypsum in surrounding tissues. In another study, after i.p. injection of gypsum (2 cm3 of a 5 or 10% suspension in saline) into guinea pigs, which were sacrificed at intervals up to 180 days, most of the dust was found distributed in the peritoneum of the anterior abdominal wall. Gypsum dust produced irregular and clustered nodules, which decreased in size over time.

Direct administration of WTC PM2.5 [mostly composed of calcium-based compounds, including calcium sulfate (gypsum) and calcium carbonate (calcite)] (10, 32, or 100 µg) into the airways of mice produced mild to moderate lung inflammation and airway hyperresponsiveness at the high dose. [It was noted that WTC PM2.5 is composed of many chemical species and that their interactions may be related with development of airway hyperresponsiveness.] In female SPF Wistar rats intratracheally (i.t.) instilled with anhydrite dust (35 mg) and sacrificed three months later, an increase in total lipid or hydroxyproline content in the lungs was not observed compared to controls.

In inhalation (nose-only) experiments in which male F344 rats were exposed to calcium sulfate fiber aerosols (100 mg/m3) for six hours per day, five days per week for three weeks, there were no effects on the number of macrophages per alveolus, bronchoalveolar lavage fluid (BALF) protein concentration, or BALF g-glutamyl transpeptidase activity (g-GT). Following three weeks of recovery, nonprotein thiol levels (NPSH), mainly glutathione, were increased in animals. In follow-up experiments, rats were exposed to an aerosol of anhydrous calcium sulfate fibers (15 mg/m3) or a combination of milled and fibrous calcium sulfate (60 mg/m3) for the same duration. Calcium levels in the lungs were similar to those of controls; however, gypsum fibers were detected in the lungs of treated animals. Significant increases in NSPH levels in BALF were observed in rats killed immediately after exposure at both doses and in recovery group animals at the higher dose. At 15 mg/m3, almost all NPSH was lost in macrophages from all treated animals (including those in recovery), but a significant decrease in extracellular g-GT activity was seen only in recovery group animals. Overall, the findings were "considered to be non-pathological local effects due to physical factors related to the shape of the gypsum fibers and not to calcium sulphate per se."

Intratracheal administration of man-made calcium sulfate fiber (2.0 mg) once per week for five weeks resulted in no deaths or significant body weight changes in female Syrian hamsters compared to controls.

Inflammation (specifically, chronic alveolitis with macrophage and neutrophil aggregation) was observed in the lung.

In guinea pigs, inhalation of calcined gypsum dust (1.6 x 104 particles/mL) for 44 hours per week in 5.5 days for two years, followed with or without a recovery period of up to 22 months, produced only minor effects in the lungs. There were 12 of 21 deaths over the entire experimental period. These were due to pneumonia or other pulmonary lesions; however, no significant gross signs of pulmonary disease or nodular or diffuse pneumoconiosis became significant. Beginning near 11 months, pigmentation and atelectasis were seen. During the recovery period, four of ten guinea pigs died; two died of pneumonia. Pigmentation continued in most animals but not atelectasis. Low-grade chronic inflammation, occurring in the first two months, also disappeared.

Mercury emissions controls on coal-fired power plants have increased the likelihood of the presence of mercury in synthetic gypsum formed in wet flue gas desulfurisation (FGD) systems and the finished wallboard produced from the FGD gypsum. In a study at a commercial wallboard plant, the raw FGD gypsum, the product stucco (beta form of CaSO4-1/2H2O), and the finished dry wallboard each contained about 1 ug Hg/g dry weight. Total mercury loss from the original FGD gypsum content was about 0.045 g Hg/ton dry gypsum processed

Synergistic/Antagonistic Effects: In rats, i.t. administration of anhydrite (5-35 mg) successively and simultaneously with quartz reduced the toxic effect of quartz in lung tissue. This protective effect on quartz toxicity was also seen in guinea pigs;

calcined gypsum dust prevented or hindered the development of fibrosis. Natural anhydrite, however, increased the fibrogenic effect of cadmium sulfide in rats. Additionally, calcined gypsum dust had a stimulatory effect on experimental tuberculosis in guinea pigs.

Cytotoxicity: In Syrian hamster embryo cells, gypsum (up to 10 ug/cm2) did not induce apoptosis. Negative results were also found in mouse peritoneal macrophages (tested at 150 ug/mL gypsum dust) and in Chinese hamster lung V79-4 cells (tested up to 100 ug/mL).

Carcinogenicity: In female Sprague-Dawley rats, i.p. injection of natural anhydrite dusts from German coal mines (doses not provided) induced granulomas; whether gypsum was the causal factor was not established. In Wistar rats, four i.p. injections of gypsum (25 mg each) induced abdominal cavity tumours, mostly sarcomatous mesothelioma, in 5% of animals; first tumour was seen at 546 days. In a subsequent experiment using the same procedure, female Wistar rats exhibited the first tumour at 579 days after the last injection. Mean survival of the tumour-bearing rats (5.7% of test group) was 583 days, while mean survival of the test group was 587 days. Tumour types seen were a sarcoma having cellular polymorphism, a carcinoma, and a reticulosarcoma.

Intratracheal administration of man-made calcium sulfate fiber (2.0 mg) once per week for five weeks produced tumours in three of 20 female Syrian hamsters observed two years later. An anaplastic carcinoma was found in the heart, and one dark cell carcinoma was seen in the kidney. Two tumours of unspecified types were observed in the rib.

In guinea pigs, inhalation of gypsum (doses not provided) for 24 months produced no lung tumours.

In rats, i.t. administration of gypsum (doses not provided in abstract) from FGD for up to 18 months produced no arterial blood gas changes or indications of secondary heart damage as compared to controls.

In another study, a single i.t. dose (25 mg) of flue gas gypsum dust did not produce a pathological reaction when observed for up to 18 months. There were also no signs of developing granuloma of fibrosis of the lungs. Lead quickly accumulated in the femur after injection but was eliminated during the observation period. In the Ames test, the flue gas gypsum dust was negative.

Genotoxicity: Calcium sulfate (up to 2.5%) was negative in Salmonella typhimurium strains TA1535, TA1537, and TA1538 and in Saccharomyces cerevisiae strain D4 with and without metabolic activation.

Developmental toxicity: In pregnant mice, rats, and rabbits, daily oral administration of calcium sulfate (16-1600 mg/kg bw) beginning on gestation day 6 up to 18 produced no effects on maternal body weights, maternal or foetal survival, or nidation; developmental effects were also not seen.

POTASSIUM CHLORIDE

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

phosphoric acid (85%)

for acid mists, aerosols, vapours

Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important role in protecting the gastric epithelium from its auto-secreted hydrochloric acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of urine can range from <5 to > 7 and normally averages 6.2. Furthermore, exposures to low pH in vivo differ from exposures *in vitro* in that, *in vivo*, only a portion of the cell surface is subjected to the adverse conditions, so that perturbation of intracellular homeostasis may be maintained more readily than in vitro.

PHOSPHORIC ACID

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce severe skin irritation after prolonged or repeated exposure, and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) thickening of the epidermis.

Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Prolonged contact is unlikely, given the severity of response, but repeated exposures may produce severe ulceration.

CALCIUM SULFATE & CALCIUM PHOSPHATE, MONOBASIC & CALCIUM FLUORIDE & PHOSPHORIC ACID

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often

Issue Date: **01/11/2019**Print Date: **09/06/2021**

	particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.		
PHOSPHORIC ACID & WATER	No significant acute toxicological data identified in literature search.		
	· ·		w .
Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	~
Mutagenicity	×	Aspiration Hazard	×

Legend

X − Data either not available or does not fill the criteria for classification
 ✓ − Data available to make classification

SECTION 12 Ecological information

_			
To	YΙ	CITI	v

	Endpoint	Test Duration (hr)	Species		Value	Source
Superten 7K	Not Available	Not Available	Not Available		Not Available	Not Available
	Endpoint	Test Duration (hr)	Species		Value	Source
	NOEC(ECx)	0.25h	Fish		75mg/l	4
calcium sulfate	EC50	72h	Algae or other aquati	c plants	>79mg/l	2
	LC50	96h	Fish		>79mg/l	2
	Endpoint	Test Duration (hr)	Species		Value	Source
	EC50(ECx)	48h	Crustacea		>2.9mg/l	2
calcium phosphate, monobasic	EC50	72h	Algae or other aquatic	plants	>4.4mg/l	2
menosasio	LC50	96h	Fish		>13.5mg/l	2
	EC50	48h	Crustacea		>2.9mg/l	2
	Endpoint	Test Duration (hr)	Species	Va	alue	Source
	NOEC(ECx)	25h	Fish	9.:	319mg/L	4
	EC50	72h	Algae or other aquatic pla	ants >1	>100mg/l	
potassium chloride	LC50	96h	Fish	75	50-1020mg/l	4
	EC50	48h	Crustacea	95	5.3-170.7mg/l	4
	EC50	96h	Algae or other aquatic pla	ants 89	94.6mg/L	4
	Endpoint	Test Duration (hr)	Species	Valu	e	Source
	NOEC(ECx)	504h	Crustacea	3.7m	ıg/l	2
	EC50	72h	Algae or other aquatic plan	nts >100)mg/l	2
calcium fluoride	LC50	96h	Fish	>=10).4<=150mg/l	2
	EC50	48h	Crustacea	97m	g/l	2
	EC50	96h	Algae or other aquatic plan	nts 43mg	g/l	2
	Endpoint	Test Duration (hr)	Species	Value	•	Source
	NOEC(ECx)	72h	Algae or other aquatic plan	nts <7.5r	ng/l	2
phosphoric acid	EC50	72h	Algae or other aquatic plan	nts 77.9r	ng/l	2
	LC50	96h	Fish	67.94	I-113.76mg/L	4
	EC50	48h	Crustacea	>100	mg/l	2
	Endpoint	Test Duration (hr)	Species		Value	Source
water	Not Available	Not Available	Not Available		Not Available	Not Available
Legend:	V3.12 (QSAR)	1. IUCLID Toxicity Data 2. Europe ECHA - Aquatic Toxicity Data (Estimated) 4. US apan) - Bioconcentration Data 7. METI (.	EPA, Ecotox database - Aquatic To:	xicity Data 5. ECETOC Aq	•	

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

May cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
calcium sulfate	HIGH	HIGH

Issue Date: **01/11/2019**Print Date: **09/06/2021**

Ingredient	Persistence: Water/Soil	Persistence: Air
potassium chloride	HIGH	HIGH
phosphoric acid	HIGH	HIGH
water	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
calcium sulfate	LOW (LogKOW = -2.2002)
potassium chloride	LOW (LogKOW = -0.4608)
phosphoric acid	LOW (LogKOW = -0.7699)

Mobility in soil

Ingredient	Mobility
calcium sulfate	LOW (KOC = 6.124)
potassium chloride	LOW (KOC = 14.3)
phosphoric acid	HIGH (KOC = 1)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- ▶ Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

Ensure that the hazardous substance is disposed in accordance with the Hazardous Substances (Disposal) Notice 2017

Disposal Requirements

Packages that have been in direct contact with the hazardous substance must be only disposed if the hazardous substance was appropriately removed and cleaned out from the package. The package must be disposed according to the manufacturer's directions taking into account the material it is made of. Packages which hazardous content have been appropriately treated and removed may be recycled.

The hazardous substance must only be disposed if it has been treated by a method that changed the characteristics or composition of the substance and it is no longer hazardous. Only dispose to the environment if a tolerable exposure limit has been set for the substance.

Only deposit the hazardous substance into or onto a landfill or sewage facility or incinerator, where the hazardous substance can be handled and treated appropriately.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
calcium sulfate	Not Available
calcium phosphate, monobasic	Not Available
potassium chloride	Not Available
calcium fluoride	Not Available
phosphoric acid	Not Available
water	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
calcium sulfate	Not Available
calcium phosphate, monobasic	Not Available
potassium chloride	Not Available

Issue Date: **01/11/2019**Print Date: **09/06/2021**

Product name	Ship Type
calcium fluoride	Not Available
phosphoric acid	Not Available
water	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This substance is to be managed using the conditions specified in an applicable Group Standard

HSR Number	Group Standard	
HSR002571	Fertilisers Subsidiary Hazard Group Standard 2020	

Please refer to Section 8 of the SDS for any applicable tolerable exposure limit or Section 12 for environmental exposure limit.

calcium sulfate is found on the following regulatory lists

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

calcium phosphate, monobasic is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

potassium chloride is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

calcium fluoride is found on the following regulatory lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

phosphoric acid is found on the following regulatory lists

New Zealand Approved Hazardous Substances with controls

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals

New Zealand Hazardous Substances and New Organisms (HSNO) Act - Classification of Chemicals - Classification Data

New Zealand Inventory of Chemicals (NZIoC)

water is found on the following regulatory lists

New Zealand Inventory of Chemicals (NZIoC)

New Zealand Workplace Exposure Standards (WES)

New Zealand Workplace Exposure Standards (WES)

Hazardous Substance Location

Subject to the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Quantities
Not Applicable	Not Applicable

Certified Handler

Subject to Part 4 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Class of substance	Quantities
Not Applicable	Not Applicable

Refer Group Standards for further information

Maximum quantities of certain hazardous substances permitted on passenger service vehicles

Subject to Regulation 13.14 of the Health and Safety at Work (Hazardous Substances) Regulations 2017.

Hazard Class	Gas (aggregate water capacity in mL)	Liquid (L)	Solid (kg)	Maximum quantity per package for each classification
Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable

Tracking Requirements

Not Applicable

National Inventory Status

national inventory olates			
National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (calcium sulfate; calcium phosphate, monobasic; potassium chloride; phosphoric acid; water)		
China - IECSC	Yes		

National Inventory Status Europe - EINEC / ELINCS / NLP Japan - ENCS Yes Korea - KECI Yes New Zealand - NZIoC Yes Philippines - PICCS Yes USA - TSCA Yes Taiwan - TCSI Yes Mexico - INSQ Yes Vietnam - NCI Yes Russia - FBEPH Yes = All CAS declared ingredients are on the inventory Legend: No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	01/11/2019
Initial Date	04/09/2008

SDS Version Summary

Version	Date of Update	Sections Updated
5.1.1.1	05/08/2019	Ingredients
6.1.1.1	01/11/2019	One-off system update. NOTE: This may or may not change the GHS classification
6.1.2.1	29/04/2021	Regulation Change
6.1.2.2	30/05/2021	Template Change
6.1.2.3	04/06/2021	Template Change
6.1.2.4	05/06/2021	Template Change

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancel

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

Issue Date: 01/11/2019

Print Date: 09/06/2021